Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Neurobiol Dis ; 195: 106496, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582333

RESUMEN

Fragile X Syndrome (FXS) is a leading known genetic cause of intellectual disability with symptoms that include increased anxiety and social and sensory processing deficits. Recent electroencephalographic (EEG) studies in humans with FXS have identified neural oscillation deficits that include increased resting state gamma power, increased amplitude of auditory evoked potentials, and reduced phase locking of sound-evoked gamma oscillations. Similar EEG phenotypes are present in mouse models of FXS, but very little is known about the development of such abnormal responses. In the current study, we employed a 30-channel mouse multielectrode array (MEA) system to record and analyze resting and stimulus-evoked EEG signals in male P21 and P91 WT and Fmr1 KO mice. This led to several novel findings. First, P91, but not P21, Fmr1 KO mice have significantly increased resting EEG power in the low- and high-gamma frequency bands. Second, both P21 and P91 Fmr1 KO mice have markedly attenuated inter-trial phase coherence (ITPC) to spectrotemporally dynamic auditory stimuli as well as to 40 Hz and 80 Hz auditory steady-state response (ASSR) stimuli. This suggests abnormal temporal processing from early development that may lead to abnormal speech and language function in FXS. Third, we found hemispheric asymmetry of fast temporal processing in the mouse auditory cortex in WT but not Fmr1 KO mice. Together, these findings define a set of EEG phenotypes in young and adult mice that can serve as translational targets for genetic and pharmacological manipulation in phenotypic rescue studies.


Asunto(s)
Electroencefalografía , Potenciales Evocados Auditivos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Ratones Noqueados , Fenotipo , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Masculino , Electroencefalografía/métodos , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Potenciales Evocados Auditivos/fisiología , Ratones , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Estimulación Acústica/métodos , Biomarcadores
2.
ASN Neuro ; 15: 17590914231184072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37410995

RESUMEN

Volume-regulated anion channels (VRACs) are a group of ubiquitously expressed outwardly-rectifying anion channels that sense increases in cell volume and act to return cells to baseline volume through an efflux of anions and organic osmolytes, including glutamate. Because cell swelling, increased extracellular glutamate levels, and reduction of the brain extracellular space (ECS) all occur during seizure generation, we set out to determine whether VRACs are dysregulated throughout mesial temporal lobe epilepsy (MTLE), the most common form of adult epilepsy. To accomplish this, we employed the IHKA experimental model of MTLE, and probed for the expression of LRRC8A, the essential pore-forming VRAC subunit, at acute, early-, mid-, and late-epileptogenic time points (1-, 7-, 14-, and 30-days post-IHKA, respectively). Western blot analysis revealed the upregulation of total dorsal hippocampal LRRC8A 14-days post-IHKA in both the ipsilateral and contralateral hippocampus. Immunohistochemical analyses showed an increased LRRC8A signal 7-days post-IHKA in both the ipsilateral and contralateral hippocampus, along with layer-specific changes 1-, 7-, and 30-days post-IHKA bilaterally. LRRC8A upregulation 1 day post-IHKA was observed primarily in astrocytes; however, some upregulation was also observed in neurons. Glutamate-GABA/glutamine cycle enzymes glutamic acid decarboxylase, glutaminase, and glutamine synthetase were also dysregulated at the 7-day timepoint post status epilepticus. The timepoint-dependent upregulation of total hippocampal LRRC8A and the possible subsequent increased efflux of glutamate in the epileptic hippocampus suggest that the dysregulation of astrocytic VRAC may play an important role in the development of epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Adulto , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/metabolismo , Ácido Kaínico/toxicidad , Ácido Kaínico/metabolismo , Ácido Glutámico/metabolismo , Epilepsia/metabolismo , Hipocampo/metabolismo , Aniones/metabolismo , Proteínas de la Membrana/metabolismo
3.
J Neurodev Disord ; 15(1): 23, 2023 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516865

RESUMEN

BACKGROUND: Autism spectrum disorders (ASD) encompass a wide array of debilitating symptoms, including sensory dysfunction and delayed language development. Auditory temporal processing is crucial for speech perception and language development. Abnormal development of temporal processing may account for the language impairments associated with ASD. Very little is known about the development of temporal processing in any animal model of ASD. METHODS: In the current study, we quantify auditory temporal processing throughout development in the Fmr1 knock-out (KO) mouse model of Fragile X Syndrome (FXS), a leading genetic cause of intellectual disability and ASD-associated behaviors. Using epidural electrodes in awake and freely moving wildtype (WT) and KO mice, we recorded auditory event related potentials (ERP) and auditory temporal processing with a gap-in-noise auditory steady state response (gap-ASSR) paradigm. Mice were recorded at three different ages in a cross sectional design: postnatal (p)21, p30 and p60. Recordings were obtained from both auditory and frontal cortices. The gap-ASSR requires underlying neural generators to synchronize responses to gaps of different widths embedded in noise, providing an objective measure of temporal processing across genotypes and age groups. RESULTS: We present evidence that the frontal, but not auditory, cortex shows significant temporal processing deficits at p21 and p30, with poor ability to phase lock to rapid gaps in noise. Temporal processing was similar in both genotypes in adult mice. ERP amplitudes were larger in Fmr1 KO mice in both auditory and frontal cortex, consistent with ERP data in humans with FXS. CONCLUSIONS: These data indicate cortical region-specific delays in temporal processing development in Fmr1 KO mice. Developmental delays in the ability of frontal cortex to follow rapid changes in sounds may shape language delays in FXS, and more broadly in ASD.


Asunto(s)
Síndrome del Cromosoma X Frágil , Percepción del Tiempo , Humanos , Adulto , Animales , Ratones , Síndrome del Cromosoma X Frágil/complicaciones , Estudios Transversales , Modelos Animales de Enfermedad , Ratones Noqueados , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética
4.
Cells ; 12(13)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37443735

RESUMEN

Edema formation following traumatic spinal cord injury (SCI) exacerbates secondary injury, and the severity of edema correlates with worse neurological outcome in human patients. To date, there are no effective treatments to directly resolve edema within the spinal cord. The aquaporin-4 (AQP4) water channel is found on plasma membranes of astrocytic endfeet in direct contact with blood vessels, the glia limitans in contact with the cerebrospinal fluid, and ependyma around the central canal. Local expression at these tissue-fluid interfaces allows AQP4 channels to play an important role in the bidirectional regulation of water homeostasis under normal conditions and following trauma. In this review, we consider the available evidence regarding the potential role of AQP4 in edema after SCI. Although more work remains to be carried out, the overall evidence indicates a critical role for AQP4 channels in edema formation and resolution following SCI and the therapeutic potential of AQP4 modulation in edema resolution and functional recovery. Further work to elucidate the expression and subcellular localization of AQP4 during specific phases after SCI will inform the therapeutic modulation of AQP4 for the optimization of histological and neurological outcomes.


Asunto(s)
Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/patología , Acuaporina 4/metabolismo , Neuroglía/metabolismo , Edema/complicaciones
5.
J Neurodev Disord ; 14(1): 52, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167501

RESUMEN

BACKGROUND: Fragile X syndrome (FXS) is the most common inherited form of neurodevelopmental disability. It is often characterized, especially in males, by intellectual disability, anxiety, repetitive behavior, social communication deficits, delayed language development, and abnormal sensory processing. Recently, we identified electroencephalographic (EEG) biomarkers that are conserved between the mouse model of FXS (Fmr1 KO mice) and humans with FXS. METHODS: In this report, we evaluate small molecule target engagement utilizing multielectrode array electrophysiology in the Fmr1 KO mouse and in humans with FXS. Neurophysiologic target engagement was evaluated using single doses of the GABAB selective agonist racemic baclofen (RBAC). RESULTS: In Fmr1 KO mice and in humans with FXS, baclofen use was associated with suppression of elevated gamma power and increase in low-frequency power at rest. In the Fmr1 KO mice, a baclofen-associated improvement in auditory chirp synchronization was also noted. CONCLUSIONS: Overall, we noted synchronized target engagement of RBAC on resting state electrophysiology, in particular the reduction of aberrant high frequency gamma activity, across species in FXS. This finding holds promise for translational medicine approaches to drug development for FXS, synchronizing treatment study across species using well-established EEG biological markers in this field. TRIAL REGISTRATION: The human experiments are registered under NCT02998151.


Asunto(s)
Síndrome del Cromosoma X Frágil , Animales , Baclofeno/farmacología , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Humanos , Masculino , Ratones , Ratones Noqueados
6.
Epilepsia Open ; 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35938285

RESUMEN

The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force initiated the TASK3 working group to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. This article addresses neuropathological changes associated with seizures and epilepsy in rodent models of epilepsy. We discuss CDEs for histopathological parameters for neurodegeneration, changes in astrocyte morphology and function, mechanisms of inflammation, and changes in the blood-brain barrier and myelin/oligodendrocytes resulting from recurrent seizures in rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the rationale and methodological aspects of individual neuropathological examinations. The CDEs, CRFs, and companion paper are available to all researchers, and their use will benefit the harmonization and comparability of translational preclinical epilepsy research. The ultimate hope is to facilitate the development of rational therapy concepts for treating epilepsies, seizures, and comorbidities and the development of biomarkers assessing the pathological state of the disease.

7.
Front Cell Neurosci ; 16: 962714, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035259

RESUMEN

Volume Regulated Anion Channels (VRAC) are critical contributors to cell volume homeostasis and are expressed ubiquitously in all vertebrate cells. VRAC sense increases in cell volume, and act to return cells to baseline volume in a process known as regulatory volume decrease (RVD) through the efflux of anions and organic osmolytes. This review will highlight seminal studies that elucidated the role of VRAC in RVD, their characteristics as a function of subunit specificity, and their clinical relevance in physiology and pathology. VRAC are also known as volume-sensitive outward rectifiers (VSOR) and volume-sensitive organic osmolyte/anion channels (VSOAC). In this review, the term VRAC will be used to refer to this family of channels.

8.
Front Cell Neurosci ; 16: 900588, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734218

RESUMEN

Epilepsy is a chronic brain disorder characterized by unprovoked seizures. Mechanisms underlying seizure activity have been intensely investigated. Alterations in astrocytic channels and transporters have shown to be a critical player in seizure generation and epileptogenesis. One key protein involved in such processes is the astrocyte water channel aquaporin-4 (AQP4). Studies have revealed that perivascular AQP4 redistributes away from astrocyte endfeet and toward the neuropil in both clinical and preclinical studies. This subcellular mislocalization significantly impacts neuronal hyperexcitability and understanding how AQP4 becomes dysregulated in epilepsy is beginning to emerge. In this review, we evaluate the role of AQP4 dysregulation and mislocalization in epilepsy.

9.
Commun Biol ; 5(1): 442, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35546357

RESUMEN

Fragile X Syndrome (FXS) is a monogenetic form of intellectual disability and autism in which well-established knockout (KO) animal models point to neuronal hyperexcitability and abnormal gamma-frequency physiology as a basis for key disorder features. Translating these findings into patients may identify tractable treatment targets. Using source modeling of resting-state electroencephalography data, we report findings in FXS, including 1) increases in localized gamma activity, 2) pervasive changes of theta/alpha activity, indicative of disrupted thalamocortical modulation coupled with elevated gamma power, 3) stepwise moderation of low and high-frequency abnormalities based on female sex, and 4) relationship of this physiology to intellectual disability and neuropsychiatric symptoms. Our observations extend findings in Fmr1-/- KO mice to patients with FXS and raise a key role for disrupted thalamocortical modulation in local hyperexcitability. This systems-level mechanism has received limited preclinical attention but has implications for understanding fundamental disease mechanisms.


Asunto(s)
Síndrome del Cromosoma X Frágil , Discapacidad Intelectual , Neocórtex , Animales , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Humanos , Ratones , Ratones Noqueados
10.
J Neurol Sci ; 435: 120193, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35259650

RESUMEN

There has been a long history of lesioning procedures to treat tremor associated with both essential tremor (ET) and Parkinson's disease (PD). These include radiofrequency (RF) thalamotomy, gamma knife radiosurgical (GKRS) thalamotomy, and magnetic resonance-guided focused ultrasound (MRgFUS). In this review, we summarize the clinical studies of lesioning procedures for tremor focusing on these ablative therapies for ET and tremor-predominant PD (TDPD). We then consider clinical treatment variables that influence decision-making regarding ablative therapies versus consideration of deep brain stimulation (DBS) and conclude with ongoing and future studies. This article is part of the Special Issue "Tremor" edited by Daniel D. Truong, Mark Hallett, and Aasef Shaikh.


Asunto(s)
Temblor Esencial , Enfermedad de Parkinson , Radiocirugia , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Humanos , Imagen por Resonancia Magnética/métodos , Enfermedad de Parkinson/cirugía , Enfermedad de Parkinson/terapia , Tálamo/diagnóstico por imagen , Tálamo/cirugía , Resultado del Tratamiento , Temblor/diagnóstico por imagen , Temblor/terapia
11.
Neurobiol Dis ; 161: 105545, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34742879

RESUMEN

Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy. Dysregulation of glutamate transporters has been a common finding across animal models of epilepsy and in patients with TLE. In this study, we investigate NRG-1/ErbB4 signaling in epileptogenesis and the neuroprotective effects of NRG-1 treatment in a mouse model of temporal lobe epilepsy. Using immunohistochemistry, we report the first evidence for NRG-1/ErbB4-dependent selective upregulation of glutamate transporter EAAC1 and bihemispheric neuroprotection by exogeneous NRG-1 in the intrahippocampal kainic acid (IHKA) model of TLE. Our findings provide evidence that dysregulation of glutamate transporter EAAC1 contributes to the development of epilepsy and can be therapeutically targeted to reduce neuronal death following IHKA-induced status epilepticus (SE).


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Neurregulina-1 , Neuroprotección , Receptor ErbB-4 , Animales , Modelos Animales de Enfermedad , Epilepsia/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Transportador 3 de Aminoácidos Excitadores/metabolismo , Hipocampo , Humanos , Ratones , Neurregulina-1/metabolismo , Neurregulina-1/farmacología , Receptor ErbB-4/metabolismo
12.
Front Psychiatry ; 12: 720752, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690832

RESUMEN

The mechanisms underlying the common association between autism spectrum disorders (ASD) and sensory processing disorders (SPD) are unclear, and treatment options to reduce atypical sensory processing are limited. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and ASD behaviors. As in most children with ASD, atypical sensory processing is a common symptom in FXS, frequently manifesting as sensory hypersensitivity. Auditory hypersensitivity is a highly debilitating condition in FXS that may lead to language delays, social anxiety and ritualized repetitive behaviors. Animal models of FXS, including Fmr1 knock out (KO) mouse, also show auditory hypersensitivity, providing a translation relevant platform to study underlying pathophysiological mechanisms. The focus of this review is to summarize recent studies in the Fmr1 KO mouse that identified neural correlates of auditory hypersensitivity. We review results of electroencephalography (EEG) recordings in the Fmr1 KO mice and highlight EEG phenotypes that are remarkably similar to EEG findings in humans with FXS. The EEG phenotypes associated with the loss of FMRP include enhanced resting EEG gamma band power, reduced cross frequency coupling, reduced sound-evoked synchrony of neural responses at gamma band frequencies, increased event-related potential amplitudes, reduced habituation of neural responses and increased non-phase locked power. In addition, we highlight the postnatal period when the EEG phenotypes develop and show a strong association of the phenotypes with enhanced matrix-metalloproteinase-9 (MMP-9) activity, abnormal development of parvalbumin (PV)-expressing inhibitory interneurons and reduced formation of specialized extracellular matrix structures called perineuronal nets (PNNs). Finally, we discuss how dysfunctions of inhibitory PV interneurons may contribute to cortical hyperexcitability and EEG abnormalities observed in FXS. Taken together, the studies reviewed here indicate that EEG recordings can be utilized in both pre-clinical studies and clinical trials, while at the same time, used to identify cellular and circuit mechanisms of dysfunction in FXS. New therapeutic approaches that reduce MMP-9 activity and restore functions of PV interneurons may succeed in reducing FXS sensory symptoms. Future studies should examine long-lasting benefits of developmental vs. adult interventions on sensory phenotypes.

13.
J Neurodev Disord ; 13(1): 47, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645383

RESUMEN

BACKGROUND: Individuals with Fragile X syndrome (FXS) and autism spectrum disorder (ASD) exhibit an array of symptoms, including sociability deficits, increased anxiety, hyperactivity, and sensory hyperexcitability. It is unclear how endocannabinoid (eCB) modulation can be targeted to alleviate neurophysiological abnormalities in FXS as behavioral research reveals benefits to inhibiting cannabinoid (CB) receptor activation and increasing endocannabinoid ligand levels. Here, we hypothesize that enhancement of 2-arachidonoyl-sn-glycerol (2-AG) in Fragile X mental retardation 1 gene knock-out (Fmr1 KO) mice may reduce cortical hyperexcitability and behavioral abnormalities observed in FXS. METHODS: To test whether an increase in 2-AG levels normalized cortical responses in a mouse model of FXS, animals were subjected to electroencephalography (EEG) recording and behavioral assessment following treatment with JZL-184, an irreversible inhibitor of monoacylglycerol lipase (MAGL). Assessment of 2-AG was performed using lipidomic analysis in conjunction with various doses and time points post-administration of JZL-184. Baseline electrocortical activity and evoked responses to sound stimuli were measured using a 30-channel multielectrode array (MEA) in adult male mice before, 4 h, and 1 day post-intraperitoneal injection of JZL-184 or vehicle. Behavior assessment was done using the open field and elevated plus maze 4 h post-treatment. RESULTS: Lipidomic analysis showed that 8 mg/kg JZL-184 significantly increased the levels of 2-AG in the auditory cortex of both Fmr1 KO and WT mice 4 h post-treatment compared to vehicle controls. EEG recordings revealed a reduction in the abnormally enhanced baseline gamma-band power in Fmr1 KO mice and significantly improved evoked synchronization to auditory stimuli in the gamma-band range post-JZL-184 treatment. JZL-184 treatment also ameliorated anxiety-like and hyperactivity phenotypes in Fmr1 KO mice. CONCLUSIONS: Overall, these results indicate that increasing 2-AG levels may serve as a potential therapeutic approach to normalize cortical responses and improve behavioral outcomes in FXS and possibly other ASDs.


Asunto(s)
Trastorno del Espectro Autista , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Animales , Endocannabinoides , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Glicerol , Masculino , Ratones , Ratones Noqueados
14.
Neurobiol Dis ; 157: 105443, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34246771

RESUMEN

Astrocytic glutamate transporters are crucial for glutamate homeostasis in the brain, and dysregulation of these transporters can contribute to the development of epilepsy. Glutamate transporter-1 (GLT-1) is responsible for the majority of glutamate uptake in the dorsal forebrain and has been shown to be reduced at epileptic foci in patients and preclinical models of temporal lobe epilepsy (TLE). Current antiepileptic drugs (AEDs) work primarily by targeting neurons directly through suppression of excitatory neurotransmission or enhancement of inhibitory neurotransmission, which can lead to both behavioral and psychiatric side effects. This study investigates the therapeutic capacity of astrocyte-specific AAV-mediated GLT-1 expression in the intrahippocampal kainic acid (IHKA) model of TLE. In this study, we used Western blot analysis, immunohistochemistry, and long-term-video EEG monitoring to demonstrate that cell-type-specific upregulation of GLT-1 in astrocytes is neuroprotective at early time points during epileptogenesis, reduces seizure frequency and total time spent in seizures, and eliminates large behavioral seizures in the IHKA model of epilepsy. Our findings suggest that targeting glutamate uptake is a promising therapeutic strategy for the treatment of epilepsy.


Asunto(s)
Astrocitos/metabolismo , Epilepsia del Lóbulo Temporal/genética , Transportador 2 de Aminoácidos Excitadores/genética , Hipocampo/metabolismo , Convulsiones/genética , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/fisiopatología , Agonistas de Aminoácidos Excitadores/toxicidad , Técnicas de Sustitución del Gen , Ácido Kaínico/toxicidad , Ratones , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/fisiopatología , Regulación hacia Arriba
16.
Neurochem Res ; 46(10): 2687-2695, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33661442

RESUMEN

Changes in astrocyte channels, transporters, and metabolism play a critical role in seizure generation and epilepsy. In particular, alterations in astrocyte potassium, glutamate, water and adenosine homeostasis and gap junctional coupling have all been associated with hyperexcitability and epileptogenesis (largely in temporal lobe epilepsy). Distinct astrocytic changes have also been identified in other types of epilepsy, such as tuberous sclerosis, tumor-associated epilepsy and post-traumatic epilepsy. Together, the emerging literature on astrocytes and epilepsy provides powerful rationale for distinct new therapeutic targets that are astrocyte-specific.


Asunto(s)
Astrocitos/metabolismo , Epilepsia/metabolismo , Adenosina/metabolismo , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Acuaporina 4/metabolismo , Epilepsia/etiología , Uniones Comunicantes/metabolismo , Humanos , Canales de Potasio de Rectificación Interna/metabolismo
17.
Neurotherapeutics ; 18(2): 1175-1187, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33594533

RESUMEN

Fragile X syndrome (FXS) is a genetic neurodevelopmental syndrome characterized by increased anxiety, repetitive behaviors, social communication deficits, delayed language development, and abnormal sensory processing. Recently, we have identified electroencephalographic (EEG) biomarkers that are conserved between the mouse model of FXS (Fmr1 KO mice) and humans with FXS. In this study, we test a specific candidate mechanism for engagement of multielectrode array (MEA) EEG biomarkers in the FXS mouse model. We administered TAK-063, a potent, selective, and orally active phosphodiesterase 10A (PDE10A) inhibitor, to Fmr1 KO mice, and examined its effects on MEA EEG biomarkers. We demonstrate significant dose-related amelioration of inter-trial phase coherence (ITPC) to temporally modulated auditory stimuli by TAK-063 in Fmr1 KO mice. Our data suggest that TAK-063 improves cortical auditory stimulus processing in Fmr1 KO mice, without significantly depressing baseline EEG power or causing any noticeable sedation or behavioral side effects. Thus, the PDE10A inhibitor TAK-063 has salutary effects on normalizing EEG biomarkers in a mouse model of FXS and should be pursued in further translational treatment development.


Asunto(s)
Estimulación Acústica/efectos adversos , Electroencefalografía/efectos de los fármacos , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Inhibidores de Fosfodiesterasa/uso terapéutico , Hidrolasas Diéster Fosfóricas , Pirazoles/uso terapéutico , Piridazinas/uso terapéutico , Animales , Electroencefalografía/métodos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Inhibidores de Fosfodiesterasa/farmacología , Pirazoles/farmacología , Piridazinas/farmacología
18.
Front Neurol ; 11: 1006, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013665

RESUMEN

Astrocytes regulate and respond to extracellular glutamate levels in the central nervous system (CNS) via the Na+-dependent glutamate transporters glutamate transporter-1 (GLT-1) and glutamate aspartate transporter (GLAST) and the metabotropic glutamate receptors (mGluR) 3 and mGluR5. Both impaired astrocytic glutamate clearance and changes in metabotropic glutamate signaling could contribute to the development of epilepsy. Dysregulation of astrocytic glutamate transporters, GLT-1 and GLAST, is a common finding across patients and preclinical seizure models. Astrocytic metabotropic glutamate receptors, particularly mGluR5, have been shown to be dysregulated in both humans and animal models of temporal lobe epilepsy (TLE). In this review, we synthesize the available evidence regarding astrocytic glutamate homeostasis and astrocytic mGluRs in the development of epilepsy. Modulation of astrocyte glutamate uptake and/or mGluR activation could lead to novel glial therapeutics for epilepsy.

19.
ASN Neuro ; 12: 1759091420967152, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33092407

RESUMEN

Astrocytes and neurons have been shown to swell across a variety of different conditions, including increases in extracellular potassium concentration (^[K+]o). The mechanisms involved in the coupling of K+ influx to water movement into cells leading to cell swelling are not well understood and remain controversial. Here, we set out to determine the effects of ^[K+]o on rapid volume responses of hippocampal CA1 pyramidal neurons and stratum radiatum astrocytes using real-time confocal volume imaging. First, we found that elevating [K+]o within a physiological range (to 6.5 mM and 10.5 mM from a baseline of 2.5 mM), and even up to pathological levels (26 mM), produced dose-dependent increases in astrocyte volume, with absolutely no effect on neuronal volume. In the absence of compensating for addition of KCl by removal of an equal amount of NaCl, neurons actually shrank in ^[K+]o, while astrocytes continued to exhibit rapid volume increases. Astrocyte swelling in ^[K+]o was not dependent on neuronal firing, aquaporin 4, the inwardly rectifying potassium channel Kir 4.1, the sodium bicarbonate cotransporter NBCe1, , or the electroneutral cotransporter, sodium-potassium-chloride cotransporter type 1 (NKCC1), but was significantly attenuated in 1 mM barium chloride (BaCl2) and by the Na+/K+ ATPase inhibitor ouabain. Effects of 1 mM BaCl2 and ouabain applied together were not additive and, together with reports that BaCl2 can inhibit the NKA at high concentrations, suggests a prominent role for the astrocyte NKA in rapid astrocyte volume increases occurring in ^[K+]o. These findings carry important implications for understanding mechanisms of cellular edema, regulation of the brain extracellular space, and brain tissue excitability.


Asunto(s)
Acuaporina 4/metabolismo , Astrocitos/metabolismo , Tamaño de la Célula , Hipocampo/metabolismo , Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Astrocitos/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Hipocampo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Potasio/farmacología
20.
Front Neurosci ; 14: 771, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848552

RESUMEN

Fragile X Syndrome (FXS) is a leading known genetic cause of intellectual disability. Many symptoms of FXS overlap with those in autism including repetitive behaviors, language delays, anxiety, social impairments and sensory processing deficits. Electroencephalogram (EEG) recordings from humans with FXS and an animal model, the Fmr1 knockout (KO) mouse, show remarkably similar phenotypes suggesting that EEG phenotypes can serve as biomarkers for developing treatments. This includes enhanced resting gamma band power and sound evoked total power, and reduced fidelity of temporal processing and habituation of responses to repeated sounds. Given the therapeutic potential of the antibiotic minocycline in humans with FXS and animal models, it is important to determine sensitivity and selectivity of EEG responses to minocycline. Therefore, in this study, we examined if a 10-day treatment of adult Fmr1 KO mice with minocycline (oral gavage, 30 mg/kg per day) would reduce EEG abnormalities. We tested if minocycline treatment has specific effects based on the EEG measurement type (e.g., resting versus sound-evoked) from the frontal and auditory cortex of the Fmr1 KO mice. We show increased resting EEG gamma power and reduced phase locking to time varying stimuli as well as the 40 Hz auditory steady state response in the Fmr1 KO mice in the pre-drug condition. Minocycline treatment increased gamma band phase locking in response to auditory stimuli, and reduced sound-evoked power of auditory event related potentials (ERP) in Fmr1 KO mice compared to vehicle treatment. Minocycline reduced resting EEG gamma power in Fmr1 KO mice, but this effect was similar to vehicle treatment. We also report frequency band-specific effects on EEG responses. Taken together, these data indicate that sound-evoked EEG responses may serve as more sensitive measures, compared to resting EEG measures, to isolate minocycline effects from placebo in humans with FXS. Given the use of minocycline and EEG recordings in a number of neurodegenerative and neurodevelopmental conditions, these findings may be more broadly applicable in translational neuroscience.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...